Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Driven Testing of Cyber Physical Systems (2102.11491v2)

Published 23 Feb 2021 in cs.CR and cs.NE

Abstract: Consumer grade cyber-physical systems (CPS) are becoming an integral part of our life, automatizing and simplifying everyday tasks. Indeed, due to complex interactions between hardware, networking and software, developing and testing such systems is known to be a challenging task. Various quality assurance and testing strategies have been proposed. The most common approach for pre-deployment testing is to model the system and run simulations with models or software in the loop. In practice, most often, tests are run for a small number of simulations, which are selected based on the engineers' domain knowledge and experience. In this paper we propose an approach to automatically generate fault-revealing test cases for CPS. We have implemented our approach in Python, using standard frameworks and used it to generate scenarios violating temperature constraints for a smart thermostat implemented as a part of our IoT testbed. Data collected from an application managing a smart building have been used to learn models of the environment under ever changing conditions. The suggested approach allowed us to identify several pit-fails, scenarios (i.e., environment conditions and inputs), where the system behaves not as expected.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dmytro Humeniuk (7 papers)
  2. Giuliano Antoniol (21 papers)
  3. Foutse Khomh (140 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.