Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Actor-Critic Method for High Dimensional Static Hamilton--Jacobi--Bellman Partial Differential Equations based on Neural Networks (2102.11379v2)

Published 22 Feb 2021 in math.OC, cs.NA, and math.NA

Abstract: We propose a novel numerical method for high dimensional Hamilton--Jacobi--BeLLMan (HJB) type elliptic partial differential equations (PDEs). The HJB PDEs, reformulated as optimal control problems, are tackled by the actor-critic framework inspired by reinforcement learning, based on neural network parametrization of the value and control functions. Within the actor-critic framework, we employ a policy gradient approach to improve the control, while for the value function, we derive a variance reduced least-squares temporal difference method using stochastic calculus. To numerically discretize the stochastic control problem, we employ an adaptive step size scheme to improve the accuracy near the domain boundary. Numerical examples up to $20$ spatial dimensions including the linear quadratic regulators, the stochastic Van der Pol oscillators, the diffusive Eikonal equations, and fully nonlinear elliptic PDEs derived from a regulator problem are presented to validate the effectiveness of our proposed method.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.