Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stratified Experience Replay: Correcting Multiplicity Bias in Off-Policy Reinforcement Learning (2102.11319v1)

Published 22 Feb 2021 in cs.LG and cs.AI

Abstract: Deep Reinforcement Learning (RL) methods rely on experience replay to approximate the minibatched supervised learning setting; however, unlike supervised learning where access to lots of training data is crucial to generalization, replay-based deep RL appears to struggle in the presence of extraneous data. Recent works have shown that the performance of Deep Q-Network (DQN) degrades when its replay memory becomes too large. This suggests that outdated experiences somehow impact the performance of deep RL, which should not be the case for off-policy methods like DQN. Consequently, we re-examine the motivation for sampling uniformly over a replay memory, and find that it may be flawed when using function approximation. We show that -- despite conventional wisdom -- sampling from the uniform distribution does not yield uncorrelated training samples and therefore biases gradients during training. Our theory prescribes a special non-uniform distribution to cancel this effect, and we propose a stratified sampling scheme to efficiently implement it.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Brett Daley (14 papers)
  2. Cameron Hickert (7 papers)
  3. Christopher Amato (57 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.