Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Interpret-able feedback for AutoML systems (2102.11267v1)

Published 22 Feb 2021 in cs.LG

Abstract: Automated machine learning (AutoML) systems aim to enable training ML models for non-ML experts. A shortcoming of these systems is that when they fail to produce a model with high accuracy, the user has no path to improve the model other than hiring a data scientist or learning ML -- this defeats the purpose of AutoML and limits its adoption. We introduce an interpretable data feedback solution for AutoML. Our solution suggests new data points for the user to label (without requiring a pool of unlabeled data) to improve the model's accuracy. Our solution analyzes how features influence the prediction among all ML models in an AutoML ensemble, and we suggest more data samples from feature ranges that have high variance in such analysis. Our evaluation shows that our solution can improve the accuracy of AutoML by 7-8% and significantly outperforms popular active learning solutions in data efficiency, all the while providing the added benefit of being interpretable.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.