Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SENTINEL: Taming Uncertainty with Ensemble-based Distributional Reinforcement Learning (2102.11075v3)

Published 22 Feb 2021 in cs.LG

Abstract: In this paper, we consider risk-sensitive sequential decision-making in Reinforcement Learning (RL). Our contributions are two-fold. First, we introduce a novel and coherent quantification of risk, namely composite risk, which quantifies the joint effect of aleatory and epistemic risk during the learning process. Existing works considered either aleatory or epistemic risk individually, or as an additive combination. We prove that the additive formulation is a particular case of the composite risk when the epistemic risk measure is replaced with expectation. Thus, the composite risk is more sensitive to both aleatory and epistemic uncertainty than the individual and additive formulations. We also propose an algorithm, SENTINEL-K, based on ensemble bootstrapping and distributional RL for representing epistemic and aleatory uncertainty respectively. The ensemble of K learners uses Follow The Regularised Leader (FTRL) to aggregate the return distributions and obtain the composite risk. We experimentally verify that SENTINEL-K estimates the return distribution better, and while used with composite risk estimates, demonstrates higher risk-sensitive performance than state-of-the-art risk-sensitive and distributional RL algorithms.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube