Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anyone GAN Sing (2102.11058v1)

Published 22 Feb 2021 in cs.SD, cs.LG, and eess.AS

Abstract: The problem of audio synthesis has been increasingly solved using deep neural networks. With the introduction of Generative Adversarial Networks (GAN), another efficient and adjective path has opened up to solve this problem. In this paper, we present a method to synthesize the singing voice of a person using a Convolutional Long Short-term Memory (ConvLSTM) based GAN optimized using the Wasserstein loss function. Our work is inspired by WGANSing by Chandna et al. Our model inputs consecutive frame-wise linguistic and frequency features, along with singer identity and outputs vocoder features. We train the model on a dataset of 48 English songs sung and spoken by 12 non-professional singers. For inference, sequential blocks are concatenated using an overlap-add procedure. We test the model using the Mel-Cepstral Distance metric and a subjective listening test with 18 participants.

Citations (2)

Summary

We haven't generated a summary for this paper yet.