Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Semantically Meaningful Class Prototype Learning for One-Shot Image Semantic Segmentation (2102.10935v1)

Published 22 Feb 2021 in cs.CV and cs.MM

Abstract: One-shot semantic image segmentation aims to segment the object regions for the novel class with only one annotated image. Recent works adopt the episodic training strategy to mimic the expected situation at testing time. However, these existing approaches simulate the test conditions too strictly during the training process, and thus cannot make full use of the given label information. Besides, these approaches mainly focus on the foreground-background target class segmentation setting. They only utilize binary mask labels for training. In this paper, we propose to leverage the multi-class label information during the episodic training. It will encourage the network to generate more semantically meaningful features for each category. After integrating the target class cues into the query features, we then propose a pyramid feature fusion module to mine the fused features for the final classifier. Furthermore, to take more advantage of the support image-mask pair, we propose a self-prototype guidance branch to support image segmentation. It can constrain the network for generating more compact features and a robust prototype for each semantic class. For inference, we propose a fused prototype guidance branch for the segmentation of the query image. Specifically, we leverage the prediction of the query image to extract the pseudo-prototype and combine it with the initial prototype. Then we utilize the fused prototype to guide the final segmentation of the query image. Extensive experiments demonstrate the superiority of our proposed approach.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.