Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Kernel quadrature by applying a point-wise gradient descent method to discrete energies (2102.10887v2)

Published 22 Feb 2021 in math.NA and cs.NA

Abstract: We propose a method for generating nodes for kernel quadrature by a point-wise gradient descent method. For kernel quadrature, most methods for generating nodes are based on the worst case error of a quadrature formula in a reproducing kernel Hilbert space corresponding to the kernel. In typical ones among those methods, a new node is chosen among a candidate set of points in each step by an optimization problem with respect to a new node. Although such sequential methods are appropriate for adaptive quadrature, it is difficult to apply standard routines for mathematical optimization to the problem. In this paper, we propose a method that updates a set of points one by one with a simple gradient descent method. To this end, we provide an upper bound of the worst case error by using the fundamental solution of the Laplacian on $\mathbf{R}{d}$. We observe the good performance of the proposed method by numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.