Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Learning Based Frequency-Selective Channel Estimation for Hybrid mmWave MIMO Systems (2102.10847v1)

Published 22 Feb 2021 in cs.IT and math.IT

Abstract: Millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems typically employ hybrid mixed signal processing to avoid expensive hardware and high training overheads. {However, the lack of fully digital beamforming at mmWave bands imposes additional challenges in channel estimation. Prior art on hybrid architectures has mainly focused on greedy optimization algorithms to estimate frequency-flat narrowband mmWave channels, despite the fact that in practice, the large bandwidth associated with mmWave channels results in frequency-selective channels. In this paper, we consider a frequency-selective wideband mmWave system and propose two deep learning (DL) compressive sensing (CS) based algorithms for channel estimation.} The proposed algorithms learn critical apriori information from training data to provide highly accurate channel estimates with low training overhead. In the first approach, a DL-CS based algorithm simultaneously estimates the channel supports in the frequency domain, which are then used for channel reconstruction. The second approach exploits the estimated supports to apply a low-complexity multi-resolution fine-tuning method to further enhance the estimation performance. Simulation results demonstrate that the proposed DL-based schemes significantly outperform conventional orthogonal matching pursuit (OMP) techniques in terms of the normalized mean-squared error (NMSE), computational complexity, and spectral efficiency, particularly in the low signal-to-noise ratio regime. When compared to OMP approaches that achieve an NMSE gap of \$\unit[{4-10}]{dB}\$ with respect to the Cramer Rao Lower Bound (CRLB), the proposed algorithms reduce the CRLB gap to only \$\unit[{1-1.5}]{dB}\$, while significantly reducing complexity by two orders of magnitude.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.