Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Reinforcement Learning Using Robust Action Governor (2102.10643v2)

Published 21 Feb 2021 in cs.LG, cs.SY, and eess.SY

Abstract: Reinforcement Learning (RL) is essentially a trial-and-error learning procedure which may cause unsafe behavior during the exploration-and-exploitation process. This hinders the application of RL to real-world control problems, especially to those for safety-critical systems. In this paper, we introduce a framework for safe RL that is based on integration of a RL algorithm with an add-on safety supervision module, called the Robust Action Governor (RAG), which exploits set-theoretic techniques and online optimization to manage safety-related requirements during learning. We illustrate this proposed safe RL framework through an application to automotive adaptive cruise control.

Citations (28)

Summary

We haven't generated a summary for this paper yet.