Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Divergent Predictive States: The Statistical Complexity Dimension of Stationary, Ergodic Hidden Markov Processes (2102.10487v2)

Published 21 Feb 2021 in cond-mat.stat-mech, cs.IT, math.DS, math.IT, and nlin.CD

Abstract: Even simply-defined, finite-state generators produce stochastic processes that require tracking an uncountable infinity of probabilistic features for optimal prediction. For processes generated by hidden Markov chains the consequences are dramatic. Their predictive models are generically infinite-state. And, until recently, one could determine neither their intrinsic randomness nor structural complexity. The prequel, though, introduced methods to accurately calculate the Shannon entropy rate (randomness) and to constructively determine their minimal (though, infinite) set of predictive features. Leveraging this, we address the complementary challenge of determining how structured hidden Markov processes are by calculating their statistical complexity dimension -- the information dimension of the minimal set of predictive features. This tracks the divergence rate of the minimal memory resources required to optimally predict a broad class of truly complex processes.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.