Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Building A Group-based Unsupervised Representation Disentanglement Framework (2102.10303v2)

Published 20 Feb 2021 in cs.LG and cs.CV

Abstract: Disentangled representation learning is one of the major goals of deep learning, and is a key step for achieving explainable and generalizable models. A well-defined theoretical guarantee still lacks for the VAE-based unsupervised methods, which are a set of popular methods to achieve unsupervised disentanglement. The Group Theory based definition of representation disentanglement mathematically connects the data transformations to the representations using the formalism of group. In this paper, built on the group-based definition and inspired by the n-th dihedral group, we first propose a theoretical framework towards achieving unsupervised representation disentanglement. We then propose a model, based on existing VAE-based methods, to tackle the unsupervised learning problem of the framework. In the theoretical framework, we prove three sufficient conditions on model, group structure, and data respectively in an effort to achieve, in an unsupervised way, disentangled representation per group-based definition. With the first two of the conditions satisfied and a necessary condition derived for the third one, we offer additional constraints, from the perspective of the group-based definition, for the existing VAE-based models. Experimentally, we train 1800 models covering the most prominent VAE-based methods on five datasets to verify the effectiveness of our theoretical framework. Compared to the original VAE-based methods, these Groupified VAEs consistently achieve better mean performance with smaller variances.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.