Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multilingual Answer Sentence Reranking via Automatically Translated Data (2102.10250v1)

Published 20 Feb 2021 in cs.CL

Abstract: We present a study on the design of multilingual Answer Sentence Selection (AS2) models, which are a core component of modern Question Answering (QA) systems. The main idea is to transfer data, created from one resource rich language, e.g., English, to other languages, less rich in terms of resources. The main findings of this paper are: (i) the training data for AS2 translated into a target language can be used to effectively fine-tune a Transformer-based model for that language; (ii) one multilingual Transformer model it is enough to rank answers in multiple languages; and (iii) mixed-language question/answer pairs can be used to fine-tune models to select answers from any language, where the input question is just in one language. This highly reduces the complexity and technical requirement of a multilingual QA system. Our experiments validate the findings above, showing a modest drop, at most 3%, with respect to the state-of-the-art English model.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.