Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fast and Sample-Efficient Federated Low Rank Matrix Recovery from column-wise Linear and Quadratic Projections (2102.10217v5)

Published 20 Feb 2021 in cs.IT and math.IT

Abstract: We study the following lesser-known low rank (LR) recovery problem: recover an $n \times q$ rank-$r$ matrix, $X* =[x*_1 , x*_2,..., x*_q]$, with $r \ll \min(n,q)$, from $m$ independent linear projections of each of its $q$ columns, i.e., from $y_k := A_k x*_k , k \in [q]$, when $y_k$ is an $m$-length vector with $m < n$. The matrices $A_k$ are known and mutually independent for different $k$. We introduce a novel gradient descent (GD) based solution called AltGD-Min. We show that, if the $A_k$s are i.i.d. with i.i.d. Gaussian entries, and if the right singular vectors of $X*$ satisfy the incoherence assumption, then $\epsilon$-accurate recovery of $X*$ is possible with order $(n+q) r2 \log(1/\epsilon)$ total samples and order $ mq nr \log (1/\epsilon)$ time. Compared with existing work, this is the fastest solution. For $\epsilon < r{1/4}$, it also has the best sample complexity. A simple extension of AltGD-Min also provably solves LR Phase Retrieval, which is a magnitude-only generalization of the above problem. AltGD-Min factorizes the unknown $X$ as $X = UB$ where $U$ and $B$ are matrices with $r$ columns and rows respectively. It alternates between a (projected) GD step for updating $U$, and a minimization step for updating $B$. Its each iteration is as fast as that of regular projected GD because the minimization over $B$ decouples column-wise. At the same time, we can prove exponential error decay for it, which we are unable to for projected GD. Finally, it can also be efficiently federated with a communication cost of only $nr$ per node, instead of $nq$ for projected GD.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube