Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Cross Validation In Compressed Sensing With Mixed Gaussian And Impulse Measurement Noise With L1 Errors (2102.10165v1)

Published 19 Feb 2021 in cs.IT and math.IT

Abstract: Compressed sensing (CS) involves sampling signals at rates less than their Nyquist rates and attempting to reconstruct them after sample acquisition. Most such algorithms have parameters, for example the regularization parameter in LASSO, which need to be chosen carefully for optimal performance. These parameters can be chosen based on assumptions on the noise level or signal sparsity, but this knowledge may often be unavailable. In such cases, cross validation (CV) can be used to choose these parameters in a purely data-driven fashion. Previous work analysing the use of CV in CS has been based on the $\ell_2$ cross-validation error with Gaussian measurement noise. But it is well known that the $\ell_2$ error is not robust to impulse noise and provides a poor estimate of the recovery error, failing to choose the best parameter. Here we propose using the $\ell_1$ CV error which provides substantial performance benefits given impulse measurement noise. Most importantly, we provide a detailed theoretical analysis and error bounds for the use of $\ell_1$ CV error in CS reconstruction. We show that with high probability, choosing the parameter that yields the minimum $\ell_1$ CV error is equivalent to choosing the minimum recovery error (which is not observable in practice). To our best knowledge, this is the first paper which theoretically analyzes $\ell_1$-based CV in CS.

Summary

We haven't generated a summary for this paper yet.