Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

FLACK: Counterexample-Guided Fault Localization for Alloy Models (2102.10152v1)

Published 19 Feb 2021 in cs.SE

Abstract: Fault localization is a practical research topic that helps developers identify code locations that might cause bugs in a program. Most existing fault localization techniques are designed for imperative programs (e.g., C and Java) and rely on analyzing correct and incorrect executions of the program to identify suspicious statements. In this work, we introduce a fault localization approach for models written in a declarative language, where the models are not "executed," but rather converted into a logical formula and solved using backend constraint solvers. We present FLACK, a tool that takes as input an Alloy model consisting of some violated assertion and returns a ranked list of suspicious expressions contributing to the assertion violation. The key idea is to analyze the differences between counterexamples, i.e., instances of the model that do not satisfy the assertion, and instances that do satisfy the assertion to find suspicious expressions in the input model. The experimental results show that FLACK is efficient (can handle complex, real-world Alloy models with thousand lines of code within 5 seconds), accurate (can consistently rank buggy expressions in the top 1.9\% of the suspicious list), and useful (can often narrow down the error to the exact location within the suspicious expressions).

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.