Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Condensed Composite Memory Continual Learning (2102.09890v2)

Published 19 Feb 2021 in cs.LG and cs.AI

Abstract: Deep Neural Networks (DNNs) suffer from a rapid decrease in performance when trained on a sequence of tasks where only data of the most recent task is available. This phenomenon, known as catastrophic forgetting, prevents DNNs from accumulating knowledge over time. Overcoming catastrophic forgetting and enabling continual learning is of great interest since it would enable the application of DNNs in settings where unrestricted access to all the training data at any time is not always possible, e.g. due to storage limitations or legal issues. While many recently proposed methods for continual learning use some training examples for rehearsal, their performance strongly depends on the number of stored examples. In order to improve performance of rehearsal for continual learning, especially for a small number of stored examples, we propose a novel way of learning a small set of synthetic examples which capture the essence of a complete dataset. Instead of directly learning these synthetic examples, we learn a weighted combination of shared components for each example that enables a significant increase in memory efficiency. We demonstrate the performance of our method on commonly used datasets and compare it to recently proposed related methods and baselines.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)