Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gerrymandering on graphs: Computational complexity and parameterized algorithms (2102.09889v2)

Published 19 Feb 2021 in cs.DS and cs.GT

Abstract: Partitioning a region into districts to favor a particular candidate or a party is commonly known as gerrymandering. In this paper, we investigate the gerrymandering problem in graph theoretic setting as proposed by Cohen-Zemach et al. [AAMAS 2018]. Our contributions in this article are two-fold, conceptual and computational. We first resolve the open question posed by Ito et al. [AAMAS 2019] about the computational complexity of the problem when the input graph is a path. Next, we propose a generalization of their model, where the input consists of a graph on $n$ vertices representing the set of voters, a set of $m$ candidates $\mathcal{C}$, a weight function $w_v: \mathcal{C}\rightarrow {\mathbb Z}+$ for each voter $v\in V(G)$ representing the preference of the voter over the candidates, a distinguished candidate $p\in \mathcal{C}$, and a positive integer $k$. The objective is to decide if one can partition the vertex set into $k$ pairwise disjoint connected sets (districts) s.t $p$ wins more districts than any other candidate. The problem is known to be NPC even if $k=2$, $m=2$, and $G$ is either a complete bipartite graph (in fact $K_{2,n}$) or a complete graph. This means that in search for FPT algorithms we need to either focus on the parameter $n$, or subclasses of forest. Circumventing these intractable results, we give a deterministic and a randomized algorithms for the problem on paths running in times $2.619{k}(n+m){O(1)}$ and $2{k}(n+m){O(1)}$, respectively. Additionally, we prove that the problem on general graphs is solvable in time $2n (n+m){O(1)}$. Our algorithmic results use sophisticated technical tools such as representative set family and Fast Fourier transform based polynomial multiplication, and their (possibly first) application to problems arising in social choice theory and/or game theory may be of independent interest to the community.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube