Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ISCL: Interdependent Self-Cooperative Learning for Unpaired Image Denoising (2102.09858v2)

Published 19 Feb 2021 in cs.CV, cs.LG, and eess.IV

Abstract: With the advent of advances in self-supervised learning, paired clean-noisy data are no longer required in deep learning-based image denoising. However, existing blind denoising methods still require the assumption with regard to noise characteristics, such as zero-mean noise distribution and pixel-wise noise-signal independence; this hinders wide adaptation of the method in the medical domain. On the other hand, unpaired learning can overcome limitations related to the assumption on noise characteristics, which makes it more feasible for collecting the training data in real-world scenarios. In this paper, we propose a novel image denoising scheme, Interdependent Self-Cooperative Learning (ISCL), that leverages unpaired learning by combining cyclic adversarial learning with self-supervised residual learning. Unlike the existing unpaired image denoising methods relying on matching data distributions in different domains, the two architectures in ISCL, designed for different tasks, complement each other and boost the learning process. To assess the performance of the proposed method, we conducted extensive experiments in various biomedical image degradation scenarios, such as noise caused by physical characteristics of electron microscopy (EM) devices (film and charging noise), and structural noise found in low-dose computer tomography (CT). We demonstrate that the image quality of our method is superior to conventional and current state-of-the-art deep learning-based image denoising methods, including supervised learning.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.