Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models (2102.09824v2)

Published 19 Feb 2021 in cs.LG and cs.MA

Abstract: Reinforcement learning (RL) is one of the most active fields of AI research. Despite the interest demonstrated by the research community in reinforcement learning, the development methodology still lags behind, with a severe lack of standard APIs to foster the development of RL applications. OpenAI Gym is probably the most used environment to develop RL applications and simulations, but most of the abstractions proposed in such a framework are still assuming a semi-structured methodology. This is particularly relevant for agent-based models whose purpose is to analyse adaptive behaviour displayed by self-learning agents in the simulation. In order to bridge this gap, we present a workflow and tools for the decoupled development and maintenance of multi-purpose agent-based models and derived single-purpose reinforcement learning environments, enabling the researcher to swap out environments with ones representing different perspectives or different reward models, all while keeping the underlying domain model intact and separate. The Sim-Env Python library generates OpenAI-Gym-compatible reinforcement learning environments that use existing or purposely created domain models as their simulation back-ends. Its design emphasizes ease-of-use, modularity and code separation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.