Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Joint Characterization of Multiscale Information in High Dimensional Data (2102.09669v1)

Published 18 Feb 2021 in stat.ML, physics.data-an, and physics.geo-ph

Abstract: High dimensional data can contain multiple scales of variance. Analysis tools that preferentially operate at one scale can be ineffective at capturing all the information present in this cross-scale complexity. We propose a multiscale joint characterization approach designed to exploit synergies between global and local approaches to dimensionality reduction. We illustrate this approach using Principal Components Analysis (PCA) to characterize global variance structure and t-stochastic neighbor embedding (t-sne) to characterize local variance structure. Using both synthetic images and real-world imaging spectroscopy data, we show that joint characterization is capable of detecting and isolating signals which are not evident from either PCA or t-sne alone. Broadly, t-sne is effective at rendering a randomly oriented low-dimensional map of local clusters, and PCA renders this map interpretable by providing global, physically meaningful structure. This approach is illustrated using imaging spectroscopy data, and may prove particularly useful for other geospatial data given robust local variance structure due to spatial autocorrelation and physical interpretability of global variance structure due to spectral properties of Earth surface materials. However, the fundamental premise could easily be extended to other high dimensional datasets, including image time series and non-image data.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube