Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Peering Beyond the Gradient Veil with Distributed Auto Differentiation (2102.09631v3)

Published 18 Feb 2021 in cs.LG and cs.DC

Abstract: Although distributed machine learning has opened up many new and exciting research frontiers, fragmentation of models and data across different machines, nodes, and sites still results in considerable communication overhead, impeding reliable training in real-world contexts. The focus on gradients as the primary shared statistic during training has spawned a number of intuitive algorithms for distributed deep learning; however, gradient-centric training of large deep neural networks (DNNs) tends to be communication-heavy, often requiring additional adaptations such as sparsity constraints, compression, quantization, and more, to curtail bandwidth. We introduce an innovative, communication-friendly approach for training distributed DNNs, which capitalizes on the outer-product structure of the gradient as revealed by the mechanics of auto-differentiation. The exposed structure of the gradient evokes a new class of distributed learning algorithm, which is naturally more communication-efficient than full gradient sharing. Our approach, called distributed auto-differentiation (dAD), builds off a marriage of rank-based compression and the innate structure of the gradient as an outer-product. We demonstrate that dAD trains more efficiently than other state of the art distributed methods on modern architectures, such as transformers, when applied to large-scale text and imaging datasets. The future of distributed learning, we determine, need not be dominated by gradient-centric algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.