Papers
Topics
Authors
Recent
2000 character limit reached

A Simple Unified Framework for High Dimensional Bandit Problems (2102.09626v3)

Published 18 Feb 2021 in cs.LG and stat.ML

Abstract: Stochastic high dimensional bandit problems with low dimensional structures are useful in different applications such as online advertising and drug discovery. In this work, we propose a simple unified algorithm for such problems and present a general analysis framework for the regret upper bound of our algorithm. We show that under some mild unified assumptions, our algorithm can be applied to different high dimensional bandit problems. Our framework utilizes the low dimensional structure to guide the parameter estimation in the problem, therefore our algorithm achieves the comparable regret bounds in the LASSO bandit, as well as novel bounds in the low-rank matrix bandit, the group sparse matrix bandit, and in a new problem: the multi-agent LASSO bandit.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.