Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Solving the DeepFake Problem : An Analysis on Improving DeepFake Detection using Dynamic Face Augmentation (2102.09603v3)

Published 18 Feb 2021 in cs.CV, cs.AI, and cs.LG

Abstract: The creation of altered and manipulated faces has become more common due to the improvement of DeepFake generation methods. Simultaneously, we have seen detection models' development for differentiating between a manipulated and original face from image or video content. In this paper, we focus on identifying the limitations and shortcomings of existing deepfake detection frameworks. We identified some key problems surrounding deepfake detection through quantitative and qualitative analysis of existing methods and datasets. We found that deepfake datasets are highly oversampled, causing models to become easily overfitted. The datasets are created using a small set of real faces to generate multiple fake samples. When trained on these datasets, models tend to memorize the actors' faces and labels instead of learning fake features. To mitigate this problem, we propose a simple data augmentation method termed Face-Cutout. Our method dynamically cuts out regions of an image using the face landmark information. It helps the model selectively attend to only the relevant regions of the input. Our evaluation experiments show that Face-Cutout can successfully improve the data variation and alleviate the problem of overfitting. Our method achieves a reduction in LogLoss of 15.2% to 35.3% on different datasets, compared to other occlusion-based techniques. Moreover, we also propose a general-purpose data pre-processing guideline to train and evaluate existing architectures allowing us to improve the generalizability of these models for deepfake detection.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube