Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Within-Document Event Coreference with BERT-Based Contextualized Representations (2102.09600v2)

Published 15 Feb 2021 in cs.CL, cs.AI, and cs.IR

Abstract: Event coreference continues to be a challenging problem in information extraction. With the absence of any external knowledge bases for events, coreference becomes a clustering task that relies on effective representations of the context in which event mentions appear. Recent advances in contextualized language representations have proven successful in many tasks, however, their use in event linking been limited. Here we present a three part approach that (1) uses representations derived from a pretrained BERT model to (2) train a neural classifier to (3) drive a simple clustering algorithm to create coreference chains. We achieve state of the art results with this model on two standard datasets for within-document event coreference task and establish a new standard on a third newer dataset.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.