Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gradient-Tracking over Directed Graphs for solving Leaderless Multi-Cluster Games (2102.09406v1)

Published 18 Feb 2021 in eess.SY, cs.GT, and cs.SY

Abstract: We are concerned with finding Nash Equilibria in agent-based multi-cluster games, where agents are separated into distinct clusters. While the agents inside each cluster collaborate to achieve a common goal, the clusters are considered to be virtual players that compete against each other in a non-cooperative game with respect to a coupled cost function. In such scenarios, the inner-cluster problem and the game between the clusters need to be solved simultaneously. Therefore, the resulting inter-cluster Nash Equilibrium should also be a minimizer of the social welfare problem inside the clusters. In this work, this setup is cast as a distributed optimization problem with sparse state information. Hence, critical information, such as the agent's cost functions, remain private. We present a distributed algorithm that converges with a linear rate to the optimal solution. Furthermore, we apply our algorithm to an extended cournot game to verify our theoretical results.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.