Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Reinforcement learning method for Optical Thin-Film Design (2102.09398v1)

Published 13 Feb 2021 in cs.LG, eess.IV, and physics.optics

Abstract: Machine learning, especially deep learning, is dramatically changing the methods associated with optical thin-film inverse design. The vast majority of this research has focused on the parameter optimization (layer thickness, and structure size) of optical thin-films. A challenging problem that arises is an automated material search. In this work, we propose a new end-to-end algorithm for optical thin-film inverse design. This method combines the ability of unsupervised learning, reinforcement learning(RL) and includes a genetic algorithm to design an optical thin-film without any human intervention. Furthermore, with several concrete examples, we have shown how one can use this technique to optimize the spectra of a multi-layer solar absorber device.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.