Papers
Topics
Authors
Recent
2000 character limit reached

Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes (2102.09385v3)

Published 16 Feb 2021 in cs.LG, math.PR, math.ST, and stat.TH

Abstract: In this article, we consider convergence of stochastic gradient descent schemes (SGD), including momentum stochastic gradient descent (MSGD), under weak assumptions on the underlying landscape. More explicitly, we show that on the event that the SGD stays bounded we have convergence of the SGD if there is only a countable number of critical points or if the objective function satisfies Lojasiewicz-inequalities around all critical levels as all analytic functions do. In particular, we show that for neural networks with analytic activation function such as softplus, sigmoid and the hyperbolic tangent, SGD converges on the event of staying bounded, if the random variables modelling the signal and response in the training are compactly supported.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.