Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fundamental Frequency Feature Normalization and Data Augmentation for Child Speech Recognition (2102.09106v1)

Published 18 Feb 2021 in eess.AS and cs.SD

Abstract: Automatic speech recognition (ASR) systems for young children are needed due to the importance of age-appropriate educational technology. Because of the lack of publicly available young child speech data, feature extraction strategies such as feature normalization and data augmentation must be considered to successfully train child ASR systems. This study proposes a novel technique for child ASR using both feature normalization and data augmentation methods based on the relationship between formants and fundamental frequency ($f_o$). Both the $f_o$ feature normalization and data augmentation techniques are implemented as a frequency shift in the Mel domain. These techniques are evaluated on a child read speech ASR task. Child ASR systems are trained by adapting a BLSTM-based acoustic model trained on adult speech. Using both $f_o$ normalization and data augmentation results in a relative word error rate (WER) improvement of 19.3% over the baseline when tested on the OGI Kids' Speech Corpus, and the resulting child ASR system achieves the best WER currently reported on this corpus.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.