Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Adversarial-Resilient Deep Neural Networks for False Data Injection Attack Detection in Power Grids (2102.09057v2)

Published 17 Feb 2021 in cs.CR and cs.LG

Abstract: False data injection attacks (FDIAs) pose a significant security threat to power system state estimation. To detect such attacks, recent studies have proposed ML techniques, particularly deep neural networks (DNNs). However, most of these methods fail to account for the risk posed by adversarial measurements, which can compromise the reliability of DNNs in various ML applications. In this paper, we present a DNN-based FDIA detection approach that is resilient to adversarial attacks. We first analyze several adversarial defense mechanisms used in computer vision and show their inherent limitations in FDIA detection. We then propose an adversarial-resilient DNN detection framework for FDIA that incorporates random input padding in both the training and inference phases. Our simulations, based on an IEEE standard power system, demonstrate that this framework significantly reduces the effectiveness of adversarial attacks while having a negligible impact on the DNNs' detection performance.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.