Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Doubly Robust Estimator from Non-stationary Logging Policy under a Convergence of Average Probability (2102.08975v2)

Published 17 Feb 2021 in stat.ME, cs.LG, and econ.EM

Abstract: Adaptive experiments, including efficient average treatment effect estimation and multi-armed bandit algorithms, have garnered attention in various applications, such as social experiments, clinical trials, and online advertisement optimization. This paper considers estimating the mean outcome of an action from samples obtained in adaptive experiments. In causal inference, the mean outcome of an action has a crucial role, and the estimation is an essential task, where the average treatment effect estimation and off-policy value estimation are its variants. In adaptive experiments, the probability of choosing an action (logging policy) is allowed to be sequentially updated based on past observations. Due to this logging policy depending on the past observations, the samples are often not independent and identically distributed (i.i.d.), making developing an asymptotically normal estimator difficult. A typical approach for this problem is to assume that the logging policy converges in a time-invariant function. However, this assumption is restrictive in various applications, such as when the logging policy fluctuates or becomes zero at some periods. To mitigate this limitation, we propose another assumption that the average logging policy converges to a time-invariant function and show the doubly robust (DR) estimator's asymptotic normality. Under the assumption, the logging policy itself can fluctuate or be zero for some actions. We also show the empirical properties by simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)