Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamical behavior of alternate base expansions (2102.08627v1)

Published 17 Feb 2021 in math.DS, cs.DM, and math.RT

Abstract: We generalize the greedy and lazy $\beta$-transformations for a real base $\beta$ to the setting of alternate bases $\boldsymbol{\beta}=(\beta_0,\ldots,\beta_{p-1})$, which were recently introduced by the first and second authors as a particular case of Cantor bases. As in the real base case, these new transformations, denoted $T_\boldsymbol{\beta}$ and $L_\boldsymbol{\beta}$ respectively, can be iterated in order to generate the digits of the greedy and lazy $\boldsymbol{\beta}$-expansions of real numbers. The aim of this paper is to describe the dynamical behaviors of $T_\boldsymbol{\beta}$ and $L_\boldsymbol{\beta}$. We first prove the existence of a unique absolutely continuous (with respect to an extended Lebesgue measure, called the $p$-Lebesgue measure) $T_\boldsymbol{\beta}$-invariant measure. We then show that this unique measure is in fact equivalent to the $p$-Lebesgue measure and that the corresponding dynamical system is ergodic and has entropy $\frac{1}{p}\log(\beta_{p-1}\cdots \beta_0)$. We then express the density of this measure and compute the frequencies of letters in the greedy $\boldsymbol{\beta}$-expansions. We obtain the dynamical properties of $L_\boldsymbol{\beta}$ by showing that the lazy dynamical system is isomorphic to the greedy one. We also provide an isomorphism with a suitable extension of the $\beta$-shift. Finally, we show that the $\boldsymbol{\beta}$-expansions can be seen as $(\beta_{p-1}\cdots \beta_0)$-representations over general digit sets and we compare both frameworks.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.