Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

First Target and Opinion then Polarity: Enhancing Target-opinion Correlation for Aspect Sentiment Triplet Extraction (2102.08549v3)

Published 17 Feb 2021 in cs.CL

Abstract: Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from a sentence, including target entities, associated sentiment polarities, and opinion spans which rationalize the polarities. Existing methods are short on building correlation between target-opinion pairs, and neglect the mutual interference among different sentiment triplets. To address these issues, we utilize a two-stage framework to enhance the correlation between targets and opinions: at stage one, we extract targets and opinions through sequence tagging; then we append a group of artificial tags named Perceivable Pair, which indicate the span of a specific target-opinion tuple, to the input sentence to obtain closer correlated target-opinion pair representation. Meanwhile, we reduce the negative interference between triplets by restricting tokens' attention field. Finally, the polarity is identified according to the representation of the Perceivable Pair. We conduct experiments on four datasets, and the experimental results show the effectiveness of our model.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.