Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neuroevolution in Deep Learning: The Role of Neutrality (2102.08475v1)

Published 16 Feb 2021 in cs.NE

Abstract: A variety of methods have been applied to the architectural configuration and learning or training of artificial deep neural networks (DNN). These methods play a crucial role in the success or failure of the DNN for most problems and applications. Evolutionary Algorithms (EAs) are gaining momentum as a computationally feasible method for the automated optimisation of DNNs. Neuroevolution is a term which describes these processes of automated configuration and training of DNNs using EAs. However, the automatic design and/or training of these modern neural networks through evolutionary algorithms is computanalli expensive. Kimura's neutral theory of molecular evolution states that the majority of evolutionary changes at molecular level are the result of random fixation of selectively neutral mutations. A mutation from one gene to another is neutral if it does not affect the phenotype. This work discusses how neutrality, given certain conditions, can help to speed up the training/design of deep neural networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.