Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Analysis of feature learning in weight-tied autoencoders via the mean field lens (2102.08373v1)

Published 16 Feb 2021 in cs.LG, cond-mat.dis-nn, math.ST, stat.ML, and stat.TH

Abstract: Autoencoders are among the earliest introduced nonlinear models for unsupervised learning. Although they are widely adopted beyond research, it has been a longstanding open problem to understand mathematically the feature extraction mechanism that trained nonlinear autoencoders provide. In this work, we make progress in this problem by analyzing a class of two-layer weight-tied nonlinear autoencoders in the mean field framework. Upon a suitable scaling, in the regime of a large number of neurons, the models trained with stochastic gradient descent are shown to admit a mean field limiting dynamics. This limiting description reveals an asymptotically precise picture of feature learning by these models: their training dynamics exhibit different phases that correspond to the learning of different principal subspaces of the data, with varying degrees of nonlinear shrinkage dependent on the $\ell_{2}$-regularization and stopping time. While we prove these results under an idealized assumption of (correlated) Gaussian data, experiments on real-life data demonstrate an interesting match with the theory. The autoencoder setup of interests poses a nontrivial mathematical challenge to proving these results. In this setup, the "Lipschitz" constants of the models grow with the data dimension $d$. Consequently an adaptation of previous analyses requires a number of neurons $N$ that is at least exponential in $d$. Our main technical contribution is a new argument which proves that the required $N$ is only polynomial in $d$. We conjecture that $N\gg d$ is sufficient and that $N$ is necessarily larger than a data-dependent intrinsic dimension, a behavior that is fundamentally different from previously studied setups.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)