Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Information-Theoretic Justification for Model Pruning (2102.08329v4)

Published 16 Feb 2021 in cs.LG, cs.IT, eess.SP, math.IT, and stat.ML

Abstract: We study the neural network (NN) compression problem, viewing the tension between the compression ratio and NN performance through the lens of rate-distortion theory. We choose a distortion metric that reflects the effect of NN compression on the model output and derive the tradeoff between rate (compression) and distortion. In addition to characterizing theoretical limits of NN compression, this formulation shows that \emph{pruning}, implicitly or explicitly, must be a part of a good compression algorithm. This observation bridges a gap between parts of the literature pertaining to NN and data compression, respectively, providing insight into the empirical success of model pruning. Finally, we propose a novel pruning strategy derived from our information-theoretic formulation and show that it outperforms the relevant baselines on CIFAR-10 and ImageNet datasets.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.