Fast associated classical orthogonal polynomial transforms (2102.08227v1)
Abstract: We discuss a fast approximate solution to the associated classical -- classical orthogonal polynomial connection problem. We first show that associated classical orthogonal polynomials are solutions to a fourth-order quadratic eigenvalue problem with polynomial coefficients such that the differential operator is degree-preserving. Upon linearization, the discretization of this quadratic eigenvalue problem is block upper-triangular and banded. After a perfect shuffle, we extend a divide-and-conquer approach to the upper-triangular and banded generalized eigenvalue problem to the blocked case, which may be accelerated by one of a few different algorithms. Associated orthogonal polynomials arise from iterated Stieltjes transforms of orthogonal polynomials; hence, fast approximate conversion to classical cases combined with fast discrete sine and cosine transforms provides a modular mechanism for synthesis of singular integral transforms of classical orthogonal polynomial expansions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.