Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improper Reinforcement Learning with Gradient-based Policy Optimization (2102.08201v3)

Published 16 Feb 2021 in cs.LG, cs.SY, and eess.SY

Abstract: We consider an improper reinforcement learning setting where a learner is given $M$ base controllers for an unknown Markov decision process, and wishes to combine them optimally to produce a potentially new controller that can outperform each of the base ones. This can be useful in tuning across controllers, learnt possibly in mismatched or simulated environments, to obtain a good controller for a given target environment with relatively few trials. \par We propose a gradient-based approach that operates over a class of improper mixtures of the controllers. We derive convergence rate guarantees for the approach assuming access to a gradient oracle. The value function of the mixture and its gradient may not be available in closed-form; however, we show that we can employ rollouts and simultaneous perturbation stochastic approximation (SPSA) for explicit gradient descent optimization. Numerical results on (i) the standard control theoretic benchmark of stabilizing an inverted pendulum and (ii) a constrained queueing task show that our improper policy optimization algorithm can stabilize the system even when the base policies at its disposal are unstable\footnote{Under review. Please do not distribute.}.

Summary

We haven't generated a summary for this paper yet.