Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Analysis of nested multilevel Monte Carlo using approximate Normal random variables (2102.08164v1)

Published 16 Feb 2021 in math.NA and cs.NA

Abstract: The multilevel Monte Carlo (MLMC) method has been used for a wide variety of stochastic applications. In this paper we consider its use in situations in which input random variables can be replaced by similar approximate random variables which can be computed much more cheaply. A nested MLMC approach is adopted in which a two-level treatment of the approximated random variables is embedded within a standard MLMC application. We analyse the resulting nested MLMC variance in the specific context of an SDE discretisation in which Normal random variables can be replaced by approximately Normal random variables, and provide numerical results to support the analysis.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.