Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Sub-band Approach to Deep Denoising Wavelet Networks and a Frequency-adaptive Loss for Perceptual Quality (2102.07973v1)

Published 16 Feb 2021 in cs.LG and cs.CV

Abstract: In this paper, we propose two contributions to neural network based denoising. First, we propose applying separate convolutional layers to each sub-band of discrete wavelet transform (DWT) as opposed to the common usage of DWT which concatenates all sub-bands and applies a single convolution layer. We show that our approach to using DWT in neural networks improves the accuracy notably, due to keeping the sub-band order uncorrupted prior to inverse DWT. Our second contribution is a denoising loss based on top k-percent of errors in frequency domain. A neural network trained with this loss, adaptively focuses on frequencies that it fails to recover the most in each iteration. We show that this loss results into better perceptual quality by providing an image that is more balanced in terms of the errors in frequency components.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.