Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Information Ranking Using Optimum-Path Forest (2102.07917v1)

Published 16 Feb 2021 in cs.AI

Abstract: The task of learning to rank has been widely studied by the machine learning community, mainly due to its use and great importance in information retrieval, data mining, and natural language processing. Therefore, ranking accurately and learning to rank are crucial tasks. Context-Based Information Retrieval systems have been of great importance to reduce the effort of finding relevant data. Such systems have evolved by using machine learning techniques to improve their results, but they are mainly dependent on user feedback. Although information retrieval has been addressed in different works along with classifiers based on Optimum-Path Forest (OPF), these have so far not been applied to the learning to rank task. Therefore, the main contribution of this work is to evaluate classifiers based on Optimum-Path Forest, in such a context. Experiments were performed considering the image retrieval and ranking scenarios, and the performance of OPF-based approaches was compared to the well-known SVM-Rank pairwise technique and a baseline based on distance calculation. The experiments showed competitive results concerning precision and outperformed traditional techniques in terms of computational load.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.