Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PeriodNet: A non-autoregressive waveform generation model with a structure separating periodic and aperiodic components (2102.07786v1)

Published 15 Feb 2021 in eess.AS, cs.LG, cs.SD, and eess.SP

Abstract: We propose PeriodNet, a non-autoregressive (non-AR) waveform generation model with a new model structure for modeling periodic and aperiodic components in speech waveforms. The non-AR waveform generation models can generate speech waveforms parallelly and can be used as a speech vocoder by conditioning an acoustic feature. Since a speech waveform contains periodic and aperiodic components, both components should be appropriately modeled to generate a high-quality speech waveform. However, it is difficult to decompose the components from a natural speech waveform in advance. To address this issue, we propose a parallel model and a series model structure separating periodic and aperiodic components. The features of our proposed models are that explicit periodic and aperiodic signals are taken as input, and external periodic/aperiodic decomposition is not needed in training. Experiments using a singing voice corpus show that our proposed structure improves the naturalness of the generated waveform. We also show that the speech waveforms with a pitch outside of the training data range can be generated with more naturalness.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.