Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Membership Inference Attacks are Easier on Difficult Problems (2102.07762v3)

Published 15 Feb 2021 in cs.LG and cs.CR

Abstract: Membership inference attacks (MIA) try to detect if data samples were used to train a neural network model, e.g. to detect copyright abuses. We show that models with higher dimensional input and output are more vulnerable to MIA, and address in more detail models for image translation and semantic segmentation, including medical image segmentation. We show that reconstruction-errors can lead to very effective MIA attacks as they are indicative of memorization. Unfortunately, reconstruction error alone is less effective at discriminating between non-predictable images used in training and easy to predict images that were never seen before. To overcome this, we propose using a novel predictability error that can be computed for each sample, and its computation does not require a training set. Our membership error, obtained by subtracting the predictability error from the reconstruction error, is shown to achieve high MIA accuracy on an extensive number of benchmarks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.