Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Expansions in Cantor real bases (2102.07722v1)

Published 15 Feb 2021 in math.CO and cs.DM

Abstract: We introduce and study series expansions of real numbers with an arbitrary Cantor real base $\boldsymbol{\beta}=(\beta_n)_{n\in\mathbb{N}}$, which we call $\boldsymbol{\beta}$-representations. In doing so, we generalize both representations of real numbers in real bases and through Cantor series. We show fundamental properties of $\boldsymbol{\beta}$-representations, each of which extends existing results on representations in a real base. In particular, we prove a generalization of Parry's theorem characterizing sequences of nonnegative integers that are the greedy $\boldsymbol{\beta}$-representations of some real number in the interval $[0,1)$. We pay special attention to periodic Cantor real bases, which we call alternate bases. In this case, we show that the $\boldsymbol{\beta}$-shift is sofic if and only if all quasi-greedy $\boldsymbol{\beta}{(i)}$-expansions of $1$ are ultimately periodic, where $\boldsymbol{\beta}{(i)}$ is the $i$-th shift of the Cantor real base $\boldsymbol{\beta}$.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.