Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Comparative Code Structure Analysis using Deep Learning for Performance Prediction (2102.07660v2)

Published 12 Feb 2021 in cs.LG and cs.PF

Abstract: Performance analysis has always been an afterthought during the application development process, focusing on application correctness first. The learning curve of the existing static and dynamic analysis tools are steep, which requires understanding low-level details to interpret the findings for actionable optimizations. Additionally, application performance is a function of an infinite number of unknowns stemming from the application-, runtime-, and interactions between the OS and underlying hardware, making it difficult, if not impossible, to model using any deep learning technique, especially without a large labeled dataset. In this paper, we address both of these problems by presenting a large corpus of a labeled dataset for the community and take a comparative analysis approach to mitigate all unknowns except their source code differences between different correct implementations of the same problem. We put the power of deep learning to the test for automatically extracting information from the hierarchical structure of abstract syntax trees to represent source code. This paper aims to assess the feasibility of using purely static information (e.g., abstract syntax tree or AST) of applications to predict performance change based on the change in code structure. This research will enable performance-aware application development since every version of the application will continue to contribute to the corpora, which will enhance the performance of the model. Our evaluations of several deep embedding learning methods demonstrate that tree-based Long Short-Term Memory (LSTM) models can leverage the hierarchical structure of source-code to discover latent representations and achieve up to 84% (individual problem) and 73% (combined dataset with multiple of problems) accuracy in predicting the change in performance.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube