Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning Model Development from a Software Engineering Perspective: A Systematic Literature Review (2102.07574v1)

Published 15 Feb 2021 in cs.SE, cs.AI, and cs.LG

Abstract: Data scientists often develop machine learning models to solve a variety of problems in the industry and academy but not without facing several challenges in terms of Model Development. The problems regarding Machine Learning Development involves the fact that such professionals do not realize that they usually perform ad-hoc practices that could be improved by the adoption of activities presented in the Software Engineering Development Lifecycle. Of course, since machine learning systems are different from traditional Software systems, some differences in their respective development processes are to be expected. In this context, this paper is an effort to investigate the challenges and practices that emerge during the development of ML models from the software engineering perspective by focusing on understanding how software developers could benefit from applying or adapting the traditional software engineering process to the Machine Learning workflow.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.