Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Transfer Learning for Future Wireless Networks: A Comprehensive Survey (2102.07572v2)

Published 15 Feb 2021 in cs.LG and cs.NI

Abstract: With outstanding features, Machine Learning (ML) has been the backbone of numerous applications in wireless networks. However, the conventional ML approaches have been facing many challenges in practical implementation, such as the lack of labeled data, the constantly changing wireless environments, the long training process, and the limited capacity of wireless devices. These challenges, if not addressed, will impede the effectiveness and applicability of ML in future wireless networks. To address these problems, Transfer Learning (TL) has recently emerged to be a very promising solution. The core idea of TL is to leverage and synthesize distilled knowledge from similar tasks as well as from valuable experiences accumulated from the past to facilitate the learning of new problems. Doing so, TL techniques can reduce the dependence on labeled data, improve the learning speed, and enhance the ML methods' robustness to different wireless environments. This article aims to provide a comprehensive survey on applications of TL in wireless networks. Particularly, we first provide an overview of TL including formal definitions, classification, and various types of TL techniques. We then discuss diverse TL approaches proposed to address emerging issues in wireless networks. The issues include spectrum management, localization, signal recognition, security, human activity recognition and caching, which are all important to next-generation networks such as 5G and beyond. Finally, we highlight important challenges, open issues, and future research directions of TL in future wireless networks.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.