Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Full state approximation by Galerkin projection reduced order models for stochastic and bilinear systems (2102.07534v1)

Published 15 Feb 2021 in math.NA, cs.NA, and math.PR

Abstract: In this paper, the problem of full state approximation by model reduction is studied for stochastic and bilinear systems. Our proposed approach relies on identifying the dominant subspaces based on the reachability Gramian of a system. Once the desired subspace is computed, the reduced order model is then obtained by a Galerkin projection. We prove that, in the stochastic case, this approach either preserves mean square asymptotic stability or leads to reduced models whose minimal realization is mean square asymptotically stable. This stability preservation guarantees the existence of the reduced system reachability Gramian which is the basis for the full state error bounds that we derive. This error bound depends on the neglected eigenvalues of the reachability Gramian and hence shows that these values are a good indicator for the expected error in the dimension reduction procedure. Subsequently, we establish the stability preservation result and the error bound for a full state approximation to bilinear systems in a similar manner. These latter results are based on a recently proved link between stochastic and bilinear systems. We conclude the paper by numerical experiments using a benchmark problem. We compare this approach with balanced truncation and show that it performs well in reproducing the full state of the system. \end{abstract}

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.