Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tight Revenue Gaps among Multi-Unit Mechanisms (2102.07454v3)

Published 15 Feb 2021 in cs.GT

Abstract: This paper considers Bayesian revenue maximization in the $k$-unit setting, where a monopolist seller has $k$ copies of an indivisible item and faces $n$ unit-demand buyers (whose value distributions can be non-identical). Four basic mechanisms among others have been widely employed in practice and widely studied in the literature: {\sf Myerson Auction}, {\sf Sequential Posted-Pricing}, {\sf $(k + 1)$-th Price Auction with Anonymous Reserve}, and {\sf Anonymous Pricing}. Regarding a pair of mechanisms, we investigate the largest possible ratio between the two revenues (a.k.a.\ the revenue gap), over all possible value distributions of the buyers. Divide these four mechanisms into two groups: (i)~the discriminating mechanism group, {\sf Myerson Auction} and {\sf Sequential Posted-Pricing}, and (ii)~the anonymous mechanism group, {\sf Anonymous Reserve} and {\sf Anonymous Pricing}. Within one group, the involved two mechanisms have an asymptotically tight revenue gap of $1 + \Theta(1 / \sqrt{k})$. In contrast, any two mechanisms from the different groups have an asymptotically tight revenue gap of $\Theta(\log k)$.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.