Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representation Learning For Speech Recognition Using Feedback Based Relevance Weighting (2102.07390v1)

Published 15 Feb 2021 in eess.AS

Abstract: In this work, we propose an acoustic embedding based approach for representation learning in speech recognition. The proposed approach involves two stages comprising of acoustic filterbank learning from raw waveform, followed by modulation filterbank learning. In each stage, a relevance weighting operation is employed that acts as a feature selection module. In particular, the relevance weighting network receives embeddings of the model outputs from the previous time instants as feedback. The proposed relevance weighting scheme allows the respective feature representations to be adaptively selected before propagation to the higher layers. The application of the proposed approach for the task of speech recognition on Aurora-4 and CHiME-3 datasets gives significant performance improvements over baseline systems on raw waveform signal as well as those based on mel representations (average relative improvement of 15% over the mel baseline on Aurora-4 dataset and 7% on CHiME-3 dataset).

Summary

We haven't generated a summary for this paper yet.